Conclusion

The key aspects of the software and hardware elements design for an AUV prototype have been presented, as a low purchasing and operation cost adaptation of other vehicles over which authors have been working in other projects. In particular, the dynamic mission planner based on an artificial intelligence paradigm showed to be very suitable to be reused in different robots with different inspection missions. This mission planner showed that this approach is able to re-plan the vehicle trajectory while in the mission, taking into account the original static mission settings, the changing underwater environment and the situation of the target under inspection. The new experimental prototype ICTIOBOT presented here will surely be an adequate test-bed for the new task and path planning algorithms. In particular we will focus in a near future in the enlargement of the knowledge-base within the DMP for untested use-cases.

The work also shows that it is possible with current technology to construct a low-cost AUV for pipeline and cable tracking that can be used for preventive maintenance purposes of submarine infrastructure. In addition, the prototype is useful for test and improvement of each module separately.

From the obtained results is possible to observe that there is still a need to improve several aspects in the guidance, control and navigation systems, since the AUV's real path moves away considerably from the desirable trajectory proposed by the DMP module.

Learn Photoshop Now

Learn Photoshop Now

This first volume will guide you through the basics of Photoshop. Well start at the beginning and slowly be working our way through to the more advanced stuff but dont worry its all aimed at the total newbie.

Get My Free Ebook


Post a comment